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Executive Summary

The research, documented in this report, was carried out as part of a Phase I effort for the
Department of Defense under the Small Business Innovative Research program. The objective
of this research was to investigate the feasibility of developing techniques for secure and
robust information hiding in digital imagery. Availability of efficient and secure algorithms for
hiding secret, additional information in digital images can increase the communication
bandwidth, contribute to an increased security of communication, and provide a unique and
versatile protection of intellectual property rights, copyright authentication, and enable secure
data dissemination.

Phase I research was conducted as four separate tasks. Task 1 consisted of developing
steganographic methods in which the pixel values of a carrier image are slightly modified in
order to encode a secret message. The pixel modifications need to be consistent with a noise
model for that particular carrier image. This consistency is absolutely crucial in order to
guarantee security of the hiding scheme. A general method was developed for noise models
with symmetric probability distributions. It was also demonstrated how the security of data
hiding schemes could be increased using chaotic maps as universal dispersers.

In Task 2, an extensive study of robust data embedding was performed. Several new
robust data embedding techniques were developed, implemented in Matlab, and tested. The
first robust data embedding technique is based on overlaying a pattern with its energy
concentrated in low frequencies. The pattern is sensitive to every bit of the image and the
author’s ID. It is generated with a cryptographically strong pseudo-random number generator,
processed with a cellular automaton, and smoothened with a smoothing kernel. The second
method is based on modifying the values of discrete cosine coefficients, and the method does
not require the original image for message extraction.

The third method is based on smooth, orthogonal patterns. It provides excellent
robustness properties with a very high degree of security. Task 3 involved a study of security
properties of the newly developed schemes. A new type of attack on robust data embedding
schemes was discovered. The attack can be mounted against any non-adaptive watermarking
scheme that embeds information into a selected subset of lowest frequency Fourier modes. It
was shown that the attack could successfully break a simplified version of one of the most
robust data embedding scheme described in [7]. The third robust data hiding scheme based on
smooth orthogonal patterns was designed with the purpose to thwart this attack. The
proposed data embedding schemes were tested against two general-purpose watermark-
removing software packages: StirMark and UnZign [28]. UnZign did not pose any serious
threat to the new schemes, while StirMark has shown that a special preprocessing of data
prior to data detection is necessary. The security tests involved tests against collusion attack
and overwatermarking.

The final Task 4 involved an extensive testing of the proposed data embedding schemes
against intentional removal and against common image processing operations, such as
resampling, blurring, noise adding, cropping, and lossy compression.

Phase I research was successful in demonstrating the feasibility and current capabilities of
data hiding schemes. We were able to design non-robust steganographic schemes that
preserve noise models of the carrier image, provided the probability distribution of the noise is
symmetrical. In addition to that, we were able to develop robust data embedding schemes with
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capabilities sufficient for unambiguous proving of ownership of digital images and
fingerprinting multiple copies of an image (source-based watermarking). We have identified a
limitation of robust data hiding schemes that do not require the original image for message
extraction. Nonlinear geometric distortions, such as those introduced by StirMark, cause
serious synchronization problems to such schemes. This problem could be overcome by using
localized schemes with small blocks that would enable synchronization of the message
detector. To confirm this observation and develop a robust scheme, further research is
necessary.
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1.         Outline of Proposed Research

Before presenting in detail the results of the Phase I research, we outline the background
and motivation for this research as indicated in the original Phase I SBIR proposal.

1.1       Background and Identification of Problem
The main goal of the research performed in Phase I was to prove the feasibility of new
concepts for secure hiding of messages in digital images. The current research and the
research proposed for the Phase II addresses Air Force deficiencies including, but not
restricted to the following:

• MOB-XXX-96-INF-023, “Intelligence Collection and Imagery Dissemination”;

• ISR-IFAP-96-XX-042, “Lack of Modern Approach to SCI Security Management and
Distribution”;

• ABS-ABO-96-SC-002, “Data Networks Vulnerable to Intrusion / Exploitation /
Disruption.”

The techniques for secret hiding of messages in an otherwise innocent looking carrier
message belong to the field of steganography. The purpose of steganography is to conceal the
very presence of secret information. Steganography is not a substitute of cryptography. To the
contrary, these two fields can tremendously benefit from each other if properly combined. The
steganographic algorithm should depend on a secret key so that without the key, it should be
impossible not only to extract the hidden message but also to prove its very existence. For
obvious security reasons, the key should never be sent with the carrier and should be carrier
independent. This is important because if an adversary gets hold of the hiding algorithm, the
whole communication channel would be compromised. To make the communication more
efficient, the secret information should be compressed before it is hidden in the carrier. This
way the amount of information that is to be sent is minimized. Also, it is easier to hide random
looking message into the carrier than to hide a message with patterns and regularities.
Encrypting the compressed message before hiding is always recommended and provides
essentially a double protection.

The steganographer’s job is to make the secretly hidden information difficult to detect
given the complete knowledge of the algorithm used to embed the information except some
secret key1. This so-called Kerckhoff’s principle is the golden rule of cryptography and is
often accepted for steganography as well. In steganography, however, the principle becomes
somewhat blurry because the adversary’s ability to detect subtle changes in digital data
depends on what she knows about the original carrier and its statistical properties. Simply
postulating that an eavesdropper (Eve) knows everything there is to know about the carrier is
overly optimistic, restrictive, and unachievable in practice. Eve may know, for example, the
exact type of the scanner used by Alice and Bob to exchange messages hidden in digital
images. Eve can buy the same brand of scanner and build a detailed model of the noise.
However, if Eve builds a really detailed model of her scanner noise, she may overdo her job
and actually detect differences between the two pieces of hardware rather than secret
                                               
1This is not a uniformly accepted principle, see Tinsley’s [26] arguments against Kerckhoff’s principle.
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messages. On the other hand, if the source of images Alice and Bob use is not known to Eve,
she has to learn the noise by intercepting the communication channel and collect enough
information to build a model. However, this task is a difficult one because Alice and Bob can
be creative and pick the images randomly from some secret shared database or even modify
the noise component using a secret key. Another complication is that it is difficult to estimate
the noise model from images containing the noise. The noise may be pixel-dependent and the
only reliable way would be to scan each image many times to accurately estimate the noise
component.

The field of steganography is very old. Recent steganographic methods include invisible
ink and microdots. Microdots are blocks of text or images scaled down to the size of a regular
dot in a text. Shifting words and changing spacing between lines in text documents or in
images containing text can also be used for hiding bits of secret messages [3− 5]. Today, it
seems natural to use digital images, digital video, or sound for hiding of secret messages. The
gaps in human visual and audio systems can be used for information hiding. For example, the
human eye is relatively insensitive to high spatial frequencies. This fact has been utilized in
many steganographic algorithms, which modify the least significant bits of gray levels in digital
images or digital sound tracks. Human eye is also insensitive to gradual changes in brightness.
By overlaying an irregular pattern with gradual changes over the image, the embedded
information is incorporated into low frequencies and becomes more robust with respect to
common image processing operations and lossy compression. The masking properties of the
human visual system can be quantified using mathematical models. Such models can then be
applied for design of very robust steganographic techniques with relatively large data capacity
[24,25].

Recently, there has been some confusion and misconceptions regarding steganographic
methods in connection with digital data. Some authors do not correctly distinguish between
invisibility, undetectability and robustness with respect to intentional and unintentional
modifications, and the security. By definition, steganographic methods should not visibly
modify the carrier. If the carrier is an image, the modifications should be imperceivable to the
human visual system, if the carrier is an audio track; the changes should be imperceptible to
the human ear. This, however, does not necessarily rule out the possibility that it may be
possible to mathematically prove that applying some sophisticated statistical tests has modified
the carrier. The purpose of data hiding can vary, and it is the specific application that
imposes different requirements and limitations on the appropriate steganographic methods.
We propose to divide data hiding schemes into two categories based on different requirements
the techniques must satisfy.
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Secret message hiding

Purpose To send a secret message without raising any suspicion that a secret
message is being sent.

Requirements Secrecy, difficult to detect, large capacity.

Remarks Always assume Kerckhoff’s principle (protect the embedded information
by a message and carrier independent key), maximize the capacity,
minimize key size.

Watermarks

Purpose Copyright protection, proof of ownership, fingerprinting (tracing
distributed multiple copies), image integrity protection.

Requirements Robustness, difficult to remove even under collusion and Kerckhoff’s
principle.

Remarks We do not require that the watermark not be detectable in the sense of
maximum secrecy as in the case of covert communication

The first category comprises of techniques that hide a large message inside a carrier image.
The main requirements are channel capacity and security. A simple example of such a
technique is the least significant bit encoding where the least significant bit of each pixel is
replaced with one bit of an (encrypted) message. We stress that the hidden message is not
required to be robust with respect to modifications of the carrier image. The method is used
for covert communication and its primary purpose is to hide the very presence of secret
communication. One can imagine a web page containing images, which are periodically
updated. Although the messages are available to everybody, only those possessing a secret
key can view the hidden information. This way, the very presence of communication is well
masked. An important requirement is that it should be computationally difficult to detect the
presence of (but not necessarily be able to read) the hidden message.

The second category of message hiding methods has complementary requirements. The
main requirement is the robustness of the hidden message with respect to carrier
modifications, while the capacity of the hidden channel may be as low as one bit. Such
techniques find important applications in digital watermarking for copyright protection,
fingerprinting for traitor tracing, image integrity verification, and authentication of digital
documents.

1.2       Phase I Technical Objectives
The purpose of this subsection is to review the specific Phase I objective for each task, as

outlined in the Phase I proposal, and summarize the results of the Phase I research.
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Four primary objectives existed for this research. As outlined previously in the Phase I
proposal, these were:
1.  Creating schemes for hiding messages in images by slightly modifying the pixel values in

an existing image (a carrier) so that a message or simply a different image can be hidden in
the carrier.

2.  Extending the schemes to images in graphic formats, which utilize lossy compression
algorithms. Since a robustness with respect to small amount of noise and / or to loss of
information due to lossy compression is necessary, we intend to work in the Fourier /
wavelet space instead of the pixel space.

3.  Studying the security, efficiency, and robustness of schemes for hiding messages and
implementing the algorithms. The security with respect to known attacks will be
investigated.

4.  Demonstrating the performance of the hiding schemes on real imagery.

Each of the above issues was examined using a theoretical approach and an experimental
approach based on computer simulations. In the following sections, we present the detailed
results of the Phase I research.

2.         Results of Phase I Research

In this section we detail the approach, results, and conclusions with respect to each of the
proposed Phase I tasks and objectives. Objectives 1 and 2 as specified above are discussed in
Subsections 2.1 and 2.2, respectively. Objectives 3 and 4 include the study of security,
efficiency, and robustness of the proposed schemes, and testing on real imagery. These
objectives were pursued simultaneously with objectives 1 and 2 and are discussed for each
proposed data hiding technique in Sections 2.1− 2.3.

In particular, we proved that it is possible to hide messages in the noise component of
digital images in such a way that specific statistical characteristics of the carrier image are not
disturbed. This way, the hidden message is well masked and its presence cannot be proved
even using computers and known statistical measures. We note that it is important to inject
the bits of the secret message while taking into account the properties of the carrier image.
This adaptive message hiding should be based on local properties of the carrier image.
Another aspect of secure steganographic techniques based on digital images is that message
bits should be spread pseudo-randomly over the carrier image independently of the message
lengths and should not be concentrated in the first rows or columns of the carrier image. For
this purpose, a simple but effective message-spreading algorithm based on parameterized
chaotic maps was developed. The algorithm uses discretized two-dimensional chaotic maps as
universal dispersers for random message scattering within the carrier image.

One of the main contributions of this report is the design of several new secure
watermarking schemes for digital images. The new techniques offer a very high degree of
robustness with respect to image modifications including noise and lossy compression, and are
extremely secure. The first technique is based on overlaying the carrier image with a key-
dependent image whose power is concentrated in the low frequencies. The extraction of the
hidden message is based on a discrete cosine transform. The second technique inserts bits of
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secret messages into projections of image blocks onto random, smooth, orthogonal patterns
individually generated for each image and user ID. This way, we avoid using publicly known
basis functions, such as discrete cosines, which increases security against malicious attacks.

The robustness and security of message techniques developed in Phase I was tested on
real imagery. In particular, we tested robustness with respect to blurring, lossy compression,
cropping, resampling, noise adding, and image filtering. We tested the security with respect to
the collusion attack (combining multiple images with different embedded messages in order to
remove the hidden messages). The algorithms were implemented in Matlab (the source code
for all Matlab m-functions is enclosed on a floppy disk).

2.1       Task 1: Non-robust Data Hiding in Images

2.1.1    Using chaotic maps as universal dispersers
Aura [1] proposes the following steganographic method possessing absolute secrecy. To

embed a small message of the order of 8 bits or so, just keep scanning an image till a certain
password-dependent message digest hash function returns the required 8-tuple of bits. This
method has the advantage of absolute secrecy tantamount to one time pad used in
cryptography. It guarantees the same error distribution and undetectability. Although the
scheme satisfies the requirements of a steganographic holy grail, it is time consuming, has very
limited capacity, and is not applicable to image carriers for which we only have one copy.

Aura also suggest to play it safe and change only a small fraction of the carrier bits. For
example, modify each hundredth pixel in the carrier by one gray level. Depending on the
image noise, these changes will hopefully be compatible with the uncertainties involved with
any statistical model of the image. This technique imposes limits on the maximal capacity of
the carrier image, and it can leave traces in the carrier image (see the discussion on adaptive
message hiding below).

The security of techniques based on modifying the least significant bit can be significantly
increased if the consecutive bits of the secret message can be embedded into a pseudo-
randomly chosen sequence of pixels of the cover image. While it is certainly possible to design
schemes using pseudo-random generators, we propose a scheme in which chaotic
permutations [12] are used to randomly scramble the cover image. The secret message
consisting of k bits is embedded into the first k pixels of the scrambled image. The inverse
chaotic permutation is applied to get the modified cover image. This scheme has the
advantage that it is very easily implemented, it is fast, and provides a good security. The
scheme is explained in Figure 1.
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Figure 1 Using chaotic permutations as universal dispersers.

Chaotic permutations generated using two-dimensional chaotic maps, such as the baker
map [12], depend on a sequence of integers which add up to N −  the number of pixels in one
row of the cover image. The permutations are therefore parameterized by the sequence of
integers, which play the role of a secret key without which the retrieval of the message
becomes impossible.

2.1.2    General methodology for secret message hiding in digital imagery
In this report, we argue that before we can claim any secret message hiding technique as

secure, we need to carefully investigate the carrier image and its statistical properties. The
noise component may not be uniform within the image but may depend on the pixel position in
the image. For example, pixels corresponding to a bright white color will probably be always
saturated at 255 even though the overall model of the noise can be Gaussian with a non-zero
variance. An example of such an image is shown in Figure 2. The image has been scanned on a
scanner. Figure 3 is a black and white image with black pixels corresponding to even gray
levels and white pixels corresponding to odd values of gray levels. One can clearly see a large
patch of odd pixels, which corresponds to pixels saturated at 255 in the original image. Even if
we play it safe and modify only a small fraction of pixels in the image, we will introduce some
suspicious noise into the overflowed patch. This problem with over/under flow can of course
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be avoided by a more careful choice of the carrier image, preprocessing the carrier, or by
instructing the steganographic scheme to avoid the over/under flowed areas.

While we agree that it is probably impossible to get a complete model of the carrier noise,
and that the search for the perfect steganographic method will probably never be complete, we
insist that all good secret-hiding schemes must be based on some model of the noise. If it is
known that scanned images exhibit larger noise correlations in the horizontal direction and
smaller correlations in the vertical direction, while the probability distribution for each pixel,
which is neither overflowed nor underflowed, is Gaussian with certain standard deviation, then
we have to take this evidence into account and tailor our secret message hiding scheme so that
the carrier modifications are consistent with the statistical evidence. It is certainly possible that
somebody will, with great effort, create even more sophisticated noise model and detect the
presence of messages, but only at the price of painstaking time-consuming and possible
expensive investigation. It is rather unfortunate but understandable, however, that most
detailed technical information regarding noise in CCD arrays and scanners is proprietary and
kept secret by private companies.

To give an example how one can incorporate statistical evidence into the construction of a
secret message-hiding scheme is as follows. Let us assume that the noise component of pixels
with gray levels within the range [L, H] can be modeled with a uniformly valid probability
density, f, symmetric around zero. If the secret plain-text message {pi}N

i=1 is encrypted, the
cipher-text {ci}N

i=1 should be a random sequence of ones and zeros. By averaging several
scanned versions of the carrier image, we obtain a “zero noise” image Z. Using a pseudo-
random number generator, we can choose at random N pixels in Z with their gray levels in [L,
H]. Then, we can modify the LSB of those pixels by the amount of (2bi −  1) |ηi|, where ηi is a
random variable with probability distribution f. The remainder of the pixels will be modified by
ηi. The modifications should be consistent with the statistical model.

Figure 2 A scanned image. Figure 3 The same image with white pixels
corresponding to odd gray levels and black
pixels corresponding to even gray levels.
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2.1.3    Theory of data embedding techniques
A general framework for data hiding schemes is described. The framework encompasses

all possible data hiding techniques using one formalism in a compact and elegant manner. If
the embedded information is orthogonal to the carrier image, the original unmodified image is
not needed for extraction of the secret message. However, modes, which are orthogonal to
typical images, are likely to be removed by image compression schemes, such as JPEG or
wavelets. On the other hand, messages embedded into the main modes of the image (for
example, the lowest frequencies) may create artifacts and the original carrier is needed to
extract the hidden message. This can be improved by adjusting the modes selectively
according to the properties of the human visual system [9,20,24,25]. The bonus of the latter
techniques is that they are extremely robust to modifications. As long as the carrier with the
embedded message is not distorted beyond recognition, one can algorithmically prove the
existence of the embedded message.

The framework is based on the paper by Comiskey and Smith [6], who give a nice
interpretation of data hiding schemes. Carrier image C is modulated by adding a linear
combination of basis functions Bi to obtain a stego-image S. The functions C, S, and Bi are
defined on a rectangular lattice of points (x, y) and take on integer values (in the case of gray-
scale images and palette-based images) or triples of integer values for other color images.

Stego-image (S) = Original carrier image (C) + Modifications (M).

Modifications =
=
∑ m B x yi i
i

n

( , )
1

,

where mi ∈  {− M, − M +1, … , M − 1, M}, and Bi  are defined on the image domain (usually a
rectangle).

Security is either guaranteed by keeping the original carrier image C secret or by making
the basis functions Bi  pseudo-random (key-dependent) or both. We note that if we insist that
the original image be kept secret, it becomes a part of a (large) key.

Recovery of the hidden message is made possible either because we know the original
image, or by making the basis functions orthogonal to the carrier image. If the original
unmodified carrier image is available, we can simply subtract S −  C and solve the system of
equations for the n unknown mi :

S C m B x yi i
i

n

− =
=
∑ ( , )

1
.

If the supports of the basis functions are disjoint, no equations need to be solved and the
unknown mi’s can be readily recovered. In data hiding schemes without image escrow
(without knowing the original image) we must require Bi to be orthogonal to the carrier image

(1)
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C. Recovery of mi is then simply achieved by projecting2 the stego-image S on each basis
function Bi

S B C B m B B m B Bi i j j i
j

n

j j i
j

n

, , , , .= + ≅
= =
∑ ∑

1 1

In order to recover the hidden message, we need to solve this system of n equations. If we
make the basis functions Bi orthogonal to each other, no equations need to be solved and we
have an estimate $mi  for mi

$
,

,
.m

S B

B Bi
i

i i

=

This estimate will not be exactly equal to mi for the following reasons. First, the basis
functions will not be generally exactly orthogonal to the carrier C unless we design them so. If
we make them exactly orthogonal, they will be carrier-dependent and thus become part of the
key. Second the stego-image S may be intentionally or unintentionally manipulated. In order
to make the recovery process more robust, we suggest to calculate all the estimates $mi  and
threshold them to the discrete values − M, − M + 1, … , M −  1, M. In most data hiding schemes,
the values mi are of binary nature alternating between − G and G without taking any
intermediate values. Comiskey and Smith [6] simply calculate all the estimates $mi , i = 1,… , n,
and threshold them with respect to the median of their maximum and minimum values.
However, as they note, for this to work we need to make sure that not all mi are the same.

Functions Bi can be spatially localized or localized in frequency space, or localized in both
spatial and frequency domain. They can also be spread in space or frequency. Different
choices of the basis functions lead to different data hiding schemes. For example, the simplest
implementation of LSB encoding corresponds to Bi ‘s with a one-pixel support and M = 1.

2.2       Task 2: Robust Data Embedding Schemes (Watermarking)
Some applications may require the secret data to be embedded in a robust way so that

small changes to the carrier image do not destroy the hidden data. The carrier image may be
subjected to a lossy compression scheme, such as JPEG; it can be manipulated in an image
processing software. Clearly, the higher the robustness the smaller the size of the message that
can be hidden inside the image. An important instance of robust message hiding is transparent
watermarking.

The most important requirement for digital watermarks is their robustness with respect to
common image processing procedures, such as kernel filtering, lossy compression, digital-
analog conversion, resampling, cropping, affine transformations, removing / adding features,
noise adding, copying, and scanning. The second important property of digital watermarks is

                                               

2The dot product is defined in the usual way as B B B x y B x yi j i j
x y

, ( , ) ( , ),
,

= ∑  where (x, y) runs

through all pixels in the image.
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their non-removability. This could be achieved by making the algorithm for watermark
embedding cryptographically strong using a secret key. The purpose of a digital watermark is
to prove the ownership of digital data. Robustness with respect to these operations can only
be achieved at the price of making detectable (i.e., not subtle) changes to the image. It is
probably impossible to create an undetectable (in steganographically secure sense) watermark,
which is robust.

If we can design an algorithm for embedding of robust watermarks, the watermarks can be
used for solving a dispute about an ownership of some digital data. Let us say that A creates a
digital image and watermarks it with his key. If B gets hold of the watermark image and wants
to steal the image (i.e., claim the ownership), the best he can do is to embed his watermark
into the image and claim that he can prove the ownership of the image. If the watermark is
robust, it is easy for A to prove the ownership to a judge because A can detect his watermark
in the image marked by B, while B cannot do that for the image that A has. Since we trust the
watermarking algorithm that it cannot be completely removed unless one modifies the image
beyond recognition, this proves the ownership of the image. We repeat that the watermark’s
robustness with respect to changes plays a crucial role in this dispute because if B can filter
out the original watermark, the watermark would be useless.

It is important that the watermark depend on the original image, otherwise a forgery could
be constructed by simply creating an arbitrary watermark and subtracting it from the
watermarked image to get a forged original. This so called IBM attack [8] can be prevented
by making the watermark pattern depend on the original image in a non-invertible manner.
Hash functions are usually employed in these tasks [8, 11].

What does it mean to prove that watermark is inside an image? It is to show that certain
relationship among pixels (the reconstructed watermark) can only occur by a pure chance with
an extremely low probability.

Another purpose of data embedding is to mark images so that large modifications of the
image, such as removing and/or adding objects can be detected. In this case, the watermark
would carry some information about the features present in the image. For example, we may
robustly encode values of several “hash functions” of the original image. The word hash is in
quotes because we actually do not want an absolute sensitivity with respect to the image data,
but some other functions, which would be non-collision in some robust sense. For example,
we could take a correlation of the original image with one or more secret masks. While this
would be effective against removing / adding of features, it may not work as well for, say
exchanging two small human faces in a photograph.

2.2.1    Watermarking Method I
We propose new robust watermarking techniques to remove the following weakness in the

scheme introduced by Cox et al. [7]. Their watermarking method can be interpreted as
overlaying a pattern, which is formed by a linear combination of discrete cosines. The
watermark values are used directly as coefficients of that linear combination. The watermark
may become visible (or at least detectable) in those areas of the carrier image which were
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originally uniform or had a uniform brightness gradient3. The watermark cannot be readily
removed because the discrete cosines do not generally form a set of linearly independent
functions on proper subsets of the image. Nevertheless, this situation is potentially dangerous
and could be used to mount an attack on the watermark. Let us assume that a square area
containing K pixels reveals some approximation to the watermark. Since we know that the
watermark is spanned by the lowest 1000 coefficients, we can solve K equations for the 1000
unknown DCT coefficients Ar and narrow down the possibilities for the watermark sequence
by a large margin:

g A
f i

N
f j

N
i jij r

r

r

r=
+





+



 ∈

=
∑ cos

( )
cos

( )
, ( , )

π π1

1

1000
22 1

2
2 1

2
 Area consisting of K pixels.

In the equation above, fr = (f1r, f2r) denotes the r-th 2d frequency, and Ar denotes the r-th
unknown coefficient. In Section 2.3, the attack is explained in more detail and a simplified
version of the scheme [7] is successfully attacked.

There are at least three ways to prevent the attack. One possibility is to use adaptive
watermarks whose strength is locally adjusted according to the masking properties of the
human visual system. This will be further studied in Phase II of this project.

The second possibility is to replace discrete cosines with other, key-dependent bases. If
the basis functions are not known, this type of attack would not be possible. In order to make
this practical, however, we would have to design orthogonal bases which would depend on
parameters −  a secret key. Another important requirement is that there should exist efficient
computational algorithms similar to fast Fourier type of transforms. An algorithm based on
orthogonal, key-dependent, smooth patterns (basis functions) is presented in Section 2.2.3.

The third option is to view the watermarking scheme as pattern overlaying. We do not
have to use patterns formed by a linear combination of discrete cosines but we could utilize
general key-dependent patterns with their power concentrated mostly into low frequencies in
order to guarantee robustness. This approach is further elaborated below.

We start with a procedure that transforms a string of bits (a watermark) into a smooth,
almost transparent pattern to be overlaid over the carrier image. We require a sensitive
dependence between the watermark and the resulting pattern. The pattern should not exhibit
traces of any regular building blocks. Also, patterns generated by two different watermarks
should be uncorrelated. While we realize that there probably are many ways how to achieve
these goals, we propose to seed a random number generator with the watermark to create an
initial black and white two-dimensional random pattern. The pattern will be further processed
to eliminate high frequencies. This can be done for example by applying low-pass filters to the
initial pattern. Another possibility would be to use the initial pattern as an initial condition for
some chaotic spatio-temporal dynamical system, which has the tendency to create large-scale
smooth structures. Still another possibility would be to use cellular automata with appropriate
rules. For example, it is known that voting rules and their modifications [27] can coalesce
random patterns into large-scale structures.

                                               
3Quite a large percentage of images do contain such areas.
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In Figure 4a we show an example of a randomly generated initial pattern. Since the
purpose of this study is to show the plausibility of the proposed watermarking scheme, we
used a simple random number generator supplied with Matlab V. The initial pattern was
initialized with 0’s and 1’s with the same probability (50%). The random black and white
pattern was then processed by a cellular automaton with the voting rule [27]. According to
this rule the center element follows the majority of its neighbors. In particular, we count the
number, P,  of 1’s in the 3×3 neighborhood of the center (including the center) and set the
center to 0 if P < 5, otherwise we set the center to 1. The cellular automaton with voting rules
always stops after finitely many steps (for a 128×128 image, we found this number to be
always less than 40). The resulting pattern together with three intermediate patterns is shown
in Figure 4b −  Figure 4e. As can be seen, the random pattern has coalesced into several
connected areas forming an irregular pattern which depends on the seed of the random
number generator (and therefore on the watermark sequence) in a complicated way. As the
last step, we applied a smoothing operation with a 7×7 kernel eight times. The color depth of
the resulting image was decreased to 16. Examples of five different patterns are shown in
Figure 5. Before we add these patterns to an image, we subtract 8 from each pixel value of the
pattern so that the pixels of the original unwatermarked image are modified by no more than
±8 gray levels.

Figure 4 The initial pattern a) after 1, 2, 5, and 35 iterations of a cellular automaton
with voting rules.
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Figure 5 Examples of five watermarking patterns. The contrast was enhanced
to make the patterns visible.

Since the overlaid image has most of its power concentrated in low frequencies, we expect
excellent robustness properties similar to the method proposed by Cox et al. [7]. Since our
overlaid pattern depends on the key in a complicated way, even if the watermark shows in
regions of nearly constant luminosity, it does not reveal any information about the key if a
cryptographically strong random number generator is used. Another advantage of this
technique is that it avoids transformations, which results in a faster and easy implementation.

Our new scheme for embedding digital watermark data can be described as follows:
Watermark sequence →  seed for a random number generator →  initial two-dimensional black
and white random pattern →  cellular automaton →  smoothing algorithm →  adding the pattern
to the image.

Watermark retrieval: Subtract the watermarked image from the original and calculate the
correlation between the difference and the smoothed pattern. Based on the value of the
correlation, decide about the presence of the watermark. In our experiments, the correlation in
the Fourier space performed better than in the spatial domain. Denoting the original
unwatermarked image as X, the watermarked image X’, the modified watermarked image X*
the following function was used to decide about the presence of a watermark:

sim X X
D D

D D D D
( *, ' )

*
* *

=
⋅

⋅ ⋅
   ,

where D = Y’−  Y, D* = Y*−  Y, and the symbols Y, Y’, and Y* denote the lowest 1024 discrete
cosine coefficients corresponding to X, X’, and X*, respectively.

Since it appears rather difficult to analyze the mechanism how cellular automata coalesce
randomly scattered points into connected clusters; we base our analysis on a series of
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computer experiments only. Our conclusions regarding the robustness of the method are based
solely on computer experiments. Clearly, this is not satisfactory, and a more exact analysis of
the method needs to be done. This will be an important part of the future research.

We determined experimentally that for images X and Y  watermarked by a different
watermark, sim(X, Y) is mostly confined to the interval [− 0.05, 0.05] with the maximal
observed value of 0.175.

Robustness with respect to JPEG compression. The carrier image with 128×128 pixels
and 256 gray levels and its watermarked version are shown in Figure 6. The marked image has
been compressed using JPEG compression method with quality factors 50%, 20%, 10%, and
5%. The compressed images are shown in Figure 7.

Figure 6 The original test image (left) and a watermarked copy (right).

Figure 7 The watermarked image JPEG compressed with
50%, 20%, 10%, and 5% quality factor.
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As can be seen, the quality factor 5% severely distorts the original image. Nevertheless,
the watermark can still be detected. The corresponding values of sim are shown in the table
below.

Table 1 clearly shows that common JPEG compression with quality factor equal to 50%
almost does not disturb the watermark. As low quality factor as 5% still leaves the watermark
detectable because the value of sim = 0.38 is twice as much as the largest similarity for two
random watermarks.

Figure 8 Test image after downsampling by a factor of 2 and upsampling.

Robustness to mosaic filtering. The test image 128×128 has been downsampled to a
smaller image 64×64 and then upsampled again to the previous size (see Figure 8). Although
75% of information has been lost in this process, the value of sim for the mosaic-filtered
image was 0.44, which indicates the presence of the watermark.

Robustness to blurring. We used PaintShop Pro and its “blur more” filter to blur the test
image. The resulting blurred image is shown in Figure 9. The similarity number 0.43 shows
the presence of the watermark.

Figure 9 Blurred image.

Table 1 Robustness of Method I to JPEG encoding.

Quality factor 50% 20% 10% 5%

sim 0.97 0.84 0.62 0.38
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Robustness to median filtering. PaintShop’s median filter was used to create Figure 10.
The similarity value for the filtered image was 0.71. This value indicates the presence of the
watermark.

Figure 10 Median filtered test image.

Robustness to cropping. Figure 11 shows a white rectangular area which has been
cropped from a watermarked image. The cropped watermarked area forms about 23% of the
total image area. The missing part of the cropped image was replaced with portions of the
original, unwatermarked image. The similarity function applied to that image returned the
value 0.48. This shows that even though more than 77% of image information has been
discarded due to cropping, the watermark remains detectable.

Figure 11 The white rectangle indicates the cropped area.

Robustness to uniform noise. We added 30% of uniform noise into the test image (see
Figure 12) and tested for presence of the watermark. The similarity value of 0.57 clearly
indicates the watermark’s presence.

Figure 12 The test image after adding 30% of uniform noise.
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Robustness with respect to collusion attack. In this test, we created 5 different
watermarks and averaged the watermarked images into a single image. The (enhanced)
watermark patterns are shown in Figure 5. Then, we tested the averaged image for presence
of the five watermarks. The similarity values are shown in the table below.

In an attempt to develop an embedding scheme, which would share both the robustness
and the convenience of not requiring the original carrier image for message extraction, a new
data embedding technique was developed. It is based on creating a robust relationship among
selected coefficients of low-frequency discrete cosine modes. Testing of the method will be a
part of the future effort. We also tested the averaged image for presence of 20 randomly
generated watermarks. In neither case was the value of sim greater than 0.17.

2.2.2    Watermarking Method II
Watermarking techniques that do not require the original image in order to extract the

hidden data have numerous applications, such as automatic detection of stolen images,
intelligent Internet browsers capable of filtering out inappropriate information to a particular
user, etc. The schemes usually create some correlations in the image such that the probability
of occurrence of those correlations by pure chance is very small. Bender’s texture block
mapping technique [2] achieves that by cropping a random looking area in the image and
pasting it in some other random looking area. However, this watermark can be readily
detected and removed. We need to create correlations, which would be protected by a secret
password. We choose to work in the Fourier space and make modifications to the coefficients
of discrete cosine transform rather than to the pixels.

The technique utilizes a robust relationship among randomly chosen lowest frequency
coefficients of the discrete cosine transform (DCT). The coefficients are sequentially modified
to encode a specific binary pattern. Detection of the watermark consists of checking the
pseudo-random sequence of coefficients for the desired pattern. Hence, the original image is
not needed for extraction of the watermark.

Prior to designing the watermarking method, we performed an analysis of how certain
image processing operations influence the lowest DCT coefficients. These tests will tell us
how and by how much the DCT coefficients should be changed. Three operations were tested:
blurring, downsampling, and lossy JPEG compression. The results are shown in the diagrams
below. The legend for all three diagrams is the same. The horizontal axis x is the size of the
relative change of the coefficient (a value of 0.2 means a 20% change). On the vertical axis y,
there is the number of coefficients out of 1000 lowest frequencies, which have been modified
by at least x.

Table 2 Robustness of Method I to collusion.

Watermark # w1 w2 w3 w4 w5

sim 0.42 0.44 0.48 0.56 0.44
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Blurring

JPEG compression

Downsampling

By comparing the figures for lossy JPEG compression, one can clearly see that the relative
percentage of modified coefficients quickly grows with the increasing compression ratio.
Since a 50% quality factor generates acceptable images, we have to increase the watermark
strength in order to keep a certain acceptable level of robustness.
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The proposed method is based on the scheme proposed by Cox et al [7]. For 0 < α < 1 we
define the sequence

{ } , , , , .x x x ii i i i  + = +
− = − ∞ ∞1

1
1

α
α L

This is a geometric sequence with quotient q = (1+α)/(1− α), q >1. Since the sequence is
strictly increasing, with xi approaching zero as i goes to − ∞  and xi diverging to ∞  with
increasing index i, any positive real number x belongs to exactly one interval xi ≤ x < xi+1. The
value of the quotient q guarantees that any real number x can be modified by at most 100α %
in order to move x to some other interval [xi, xi+1 ). This can be reformulated using an index
function ind(x)

ind x x x x i
ind x x x x i

i i

i i

( ) ,
( ) ,

= ≤ <
= ≤ <

+

+

1
0

1

1

   if    even
   if    odd.

Any x can be modified by adding or subtracting at most αx to change its index ind(x).

To embed a watermark, the image is transformed using a discrete cosine transform.
Originally, we have experimented with the following design: Pseudo-randomly choose k out of
N lowest frequency coefficients vi and modify them by ±αwi so that a simple binary pattern is
encoded

ind v v v w i ki
i

i i( ' ) ( ) , ( ), , , .= − + =1 1 1 '=  α K

Perform these modifications in a specific order determined by a pseudo-random generator (the
order in which the N coefficients are chosen is important). The properties of the sequence
{xi}i  guarantee that the required changes will never have to be greater than ±αvi. This design,
however, has a flaw. In the cases when vi is close to the midpoint mi , the modified value will
be close to the end point of the index interval. This will make the watermark undesirably
sensitive to noise adding. The robustness could be improved if the modified value v’i was
always close to the midpoint of the index intervals. This would, however, require a slightly
larger modification of the coefficient vi. It can be argued that the modification will never have
to be greater than (1+α)/(1− α)vi. This corresponds to a relative change of

1
1

1
2

1
1 2

+
− = + − ≈ +α

α
α
α α .

We can also say that any vi will be modified by at most 200α %. The complete description of
the algorithm is given below.

The value of x0 and α are kept secret as part of the author’s key. Since the value of α is
secret, we can afford to modify the DCT coefficients so that they stay in the middle of the
index intervals. The bit sequence ind(vi) can be public or secret. We choose the lowest N
coefficients of the DCT and pseudo-randomly choose k<N coefficients. The modifications of
the DCT coefficients were done in the following way. First, we calculated the sequence {xi}
by setting x0 = 1. For each coefficient c, find the integer r, such that xr  ≤ c < xr (1+α)/(1− α).
Compare c with the midpoint mr = xr /(1− α). If c < mr then c is changed to mr-1, otherwise it is
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changed to mr+1. Of course, this modification is only necessary in 50% of all cases (in roughly
50% cases, the index of c will be correct). The pseudo-code for this algorithm is as follows.

(1)  Take the original image and apply a message digest function to it.

(2)  Append author’s ID bit-string to the hash.

(3)  Use this bit-string to initialize a cryptographically strong pseudo-random number
generator.

(4)  Pseudo-randomly choose k out of N lowest frequency coefficients of the DCT.

(5)  Choose the bit-sequence ind(vi). This should be done such that the number of 0’s and 1’ in
the sequence is the same (so that the total energy of the image approximately stays the
same) and the 0’s and 1’ should be distributed in some regular fashion. For all of our
simulations, we chose this bit-string to be an alternating sequence ½((− 1)i+1) =
1010101010101… .

(6)  For i = 1, … , k ,

determine a positive integer r such that xr ≤ vi < xr+1 (it can be shown that

r = logvi/log q, where z denotes the integer part of z)

compute the “midpoint” of the r-th interval mr = xr / (1− α) = xr+1 / (1+α)

if ½((− 1)i+1) ≠ ½((− 1)r+1) and vi > mr then

{vi →  xr-1 / (1− α), the midpoint of the interval on the left of the r-th interval}

if ½((− 1)i+1) ≠ ½((− 1)r+1) and vi ≤ mr then

{vi →  xr+1/(1− α), the midpoint of the interval on the right of the r-th interval}

if ½((− 1)i+1) = ½((− 1)r+1) then

{vi →  xr / (1− α), the midpoint of the r-th interval}

The Matlab code for this algorithm is

function Y=mark(X,ind,alpha);

DX=dct2(X);
m=1;
DXX=DX;

[k,l]=size(ind);
coef=(1+alpha)/(1-alpha);
logcoef=log(coef);
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for i=1:k
  m=m*(-1);
  v=floor(log(abs(DX(ind(i,1),ind(i,2))))/logcoef);
  aux=coef^v/(1-alpha);
  if mod(v,2)~=(1+m)/2
    if aux > abs(DX(ind(i,1),ind(i,2)))

DXX(ind(i,1),ind(i,2))=sign(DX(ind(i,1),ind(i,2)))*(
coef^(v+1))/(1-alpha);

  else
DXX(ind(i,1),ind(i,2))=sign(DX(ind(i,1),ind(i,2)))*(
coef^(v-1))/(1-alpha);

    end
 else

DXX(ind(i,1),ind(i,2))=sign(DX(ind(i,1),ind(i,2)))*(
coef^v)/(1-alpha);

  end
end

Y=idct2(DXX);

The function mark() accepts three parameters: X, ind, and alpha. The symbol X is a matrix
of integers −  the image to be watermarked, ind is a k×2 array of integers −  (ind(i,1), ind(i,2))
are pseudo-random indexes of k DCT coefficients, and alpha corresponds to α. The output of
this function Y is the watermarked image.

To detect the watermark, we calculate the correlation between the calculated sequence
ind(vi) and  ½((− 1)i+1). The Matlab code for the watermark testing function is

function y=getwat(X,ind,alpha);

[k,l]=size(ind);
m=1;
s=0;
logcoef=log((1+alpha)/(1-alpha));

DX=dct2(X);
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for i=1:k
 m=m*(-1);
 v=floor(log(abs(DX(ind(i,1),ind(i,2))))/logcoef);
 s=s+(2*mod(v,2)-1)*m;
end
y=s/k;

The new technique was tested on real images. Robustness with respect to JPEG encoding,
resampling, blurring, and noise adding was tested. We have experimented with N=100 and
k=20. A more secure implementation can be obtained by choosing N equal to at least 1000.
The robustness results are summarized in the table below.

The security of the technique is guaranteed by the pseudo-random choice of the k
coefficients out of N lowest DCT coefficients. Without the knowledge of the key, the
parameter α, and x0 one can blindly try to modify a large number of DCT coefficients by some
large value. This will, however, inevitably cause severe distortion of the image. If one could
somehow find out the value of α, it might be plausible to detect most of the k pseudo-
randomly chosen coefficients. However, direct search for the coefficient α is tremendously
computationally intensive. One would have to search through

N
k







possibilities. For N=1000 and k=50, this number is larger than 1098. Masking the watermark
pattern with some perceptual image dependent mask could help alleviate the problem of
creating artifacts in smooth areas of the image.

Table 3 Robustness of Method II to image processing operations.

Operation Marked image
(correlation)

Unmarked image
(correlation)

JPEG 50% 0.8 0.3

JPEG 75% 0.6 0.2

JPEG 85% 0.6 0.1

JPEG 95% 0.8 0.1

Blur 1x 0.6 0.3

Blur 2x 0.6 0.1

Resample 2x 0.7 0.4

Noise Adding 0.6 0.1
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The robustness of watermarking techniques that do not require the original image for
watermark detection is understandably lower than for techniques that can subtract the original
image before detection, such as the watermarking methods I and III. However, the correlation
values as shown in Table 3 are not sufficiently well separated for a reliable scheme. For
example, the values after resampling for watermarked and unwatermarked image are 0.7 and
0.4, respectively. This indicates a possible problem with false detections. We conclude that
this watermarking technique needs further study before it can be implemented for further
study.

2.2.3    Watermarking Method III
One possibility would be to generate a random rotation matrix in a J-dimensional space

(where J is a large number of the order of at least 100) and rotate J pseudo-randomly chosen
discrete cosines or wavelets. This way, a new orthogonal basis will be obtained.

The high robustness of the method of Cox et al. [7] is due to the fact that the watermark is
placed into the most perceptive Fourier modes of the image. The fact that a publicly known
transformation is used can potentially become dangerous if portions of the original
unwatermarked image can be guessed. The security of the scheme and its versatility could be
increased if a different set of orthogonal basis functions would be used for each image. Since
the basis functions or, equivalently, the key for their generation, will be kept secret, the
watermark pattern could be spanned by a smaller number of functions thus enabling us to
embed more bits in a robust and secure manner. To achieve this goal, we need to generate a
set of orthogonal random functions (patterns) that sensitively depend on each bit of the initial
bit-string formed by a combination of user’s ID and an image hash. To guarantee good
robustness properties, the generated patterns should have their energy concentrated mainly in
low frequencies.

We start our study with a simple observation. Namely, it is not necessary to have a
complete set of orthogonal basis functions since only a relatively small number of them are
needed to span a watermark pattern. One can calculate the dot products4 of the original image
with a set of J orthogonal functions, and modify the dot products so that secret information is
encoded. Let us denote such functions fi , i = 1, … , J. Assuming that the functions are
orthogonal to each other, the system of J functions can be completed by MN− J functions gi to
a complete orthogonal system. The original image I can then be written as

I = + =< >
=
∑ c f g c f Ii i
i

J

i i, , ,
1

         

where g is a linear combination of functions gi that are orthogonal to fi . The watermarking
process is achieved by modifying the coefficients ci . Furthermore, the watermarked image Iw
can be expressed as

Iw = + =< >= +
=
∑ c f g c f Iw ci i
i

J

i i i i' , ' , ( ) ,
1

1         α

                                               

4The dot product of two images Aij and Bij is defined as <A,B> = A Bij iji j

N
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where ci’ are the modified coefficients. Given a modified watermarked image Im,

Im Im= + =< >
=
∑ c f g c fi i
i

J

i i' ' ' , ' ' , ,
1

         

we can calculate the modified coefficients by evaluating the dot products of Im with functions
fi . A cross-correlation corr of the differences c’’− c  with c’− c,

corr
c c c c
c c c c

= − −
− −

( )( ' )' '
' ' ' 

,

is compared to a threshold to decide about the presence of a watermark.

We now describe a procedure for producing orthogonal functions fi that have power
concentrated in low frequencies, and that depend sensitively on each bit of the secret bit-
string −  the combination of author’s ID and an image hash. The secret bit-string is used as a
seed for a cryptographically strong pseudo-random number generator and a set of J pseudo-
random black and white patterns are generated5. The patterns are smoothened by applying a
low-pass filter to them. To make the patterns orthogonal, the Gramm-Schmidt
orthogonalization procedure is applied. Finally, the functions are normalized to get an
orthonormal system. This way, we obtain a set of J orthonormal functions that have their
power concentrated in low frequencies. Moreover, the functions (patterns) sensitively depend
on each bit of the secret bit-string.

Our new scheme for embedding digital watermark data can be described as follows:
author’s ID + image digest →  (pseudo-random number generator + smoothing) →  a set of J
random, smooth patterns →  (Gramm-Schmidt orthogonalization process) →  a set of J
orthonormal, random, smooth patterns →  (modifying the dot products) →  watermarked
image. In our scheme, the first coefficient plays the role similar to the DC term in a DCT. To
preserve the energy of the watermarked image, the first coefficient c1 is left unmodified. The
other orthogonal patterns have approximately zero mean.

To retrieve the watermark, calculate the dot products ci’’ with the J secret functions fi.
Compare the coefficients ci’’ with those of the watermarked image and the original
unwatermarked image by calculating a correlation. Based on the value of this correlation,
decide whether or not a watermark is present. To avoid large memory requirements to store
all orthogonal patterns, only the image hash and author’s ID need to be stored. The
orthogonal patterns can be generated for each detection attempt.

A pseudo-code for the watermarking algorithm (gray scale N×N images):

begin_algorithm

read image I; // I is a matrix of integers 0, … , 255

convert I to an intensity matrix X; // xij ∈ [0,1]
                                               
5In order to keep the computational requirements at a reasonably low level, we removed the coalescing
part based on cellular automaton from the scheme.
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// Concatenate author’s ID and image hash

initial_bitstring = Author’s ID ^ Hash of I;

// Initialize a PRNG with a hash of the initial bit-string

seed = Hash(initial_bitstring);

Step 1 (Generate J pseudo-random binary patterns and smooth them)

for k=1 to J

using the PRNG, generate an N×N binary pattern Zk = Zk
ij , 1 ≤ i, j ≤ N;

Zk = smooth(Zk);

end_for

Step 2 (Orthogonalize the smoothened patterns using Gramm-Schmidt
orthogonalization procedure)

for k=1 to J

Z Z Z Z Zk k s k s

s

k

= − < >
=

−

∑ ,
1

1

Z
Z
Z

k
k

k=

end_for

Step 3 (Calculate the dot products and modify them to embed a watermark)

for k=1 to J

c Z X
c c k

k
k

k k

=< >
= +

,
' [ ( )]1 α

end_for

Step 4 (Calculate the watermarked image Iw)

Xw X k c fk
j

J

k= +
=
∑ α ( )

2

Convert Xw to a gray-scale image Iw;

end_algorithm
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The coefficients α(k) determine the visibility of the watermark and its robustness. The
watermarking scheme could be applied either globally to the whole image, or locally. In the
global scheme, the support of the functions fi is the whole image. This makes the scheme
computationally expensive with large memory requirements. For an N×N gray-scale image,
one needs JN2 bytes to store all J orthogonal patterns. This number could become
prohibitively large with even for moderate values of N (such as N = 256). The most time
consuming part of the algorithm is the Gramm-Schmidt orthogonalization process. It has
computational complexity O(J2N2). Thus, the choice of the number of orthogonal patterns, J,
turns out to be critical. If J is chosen too small, the correlation used for detection of
watermarks can have occasionally large values due to random correlations. If J is chosen too
large (of the order of 1000 or larger), the computational complexity of the scheme becomes
unreasonably large. A good compromise is to break the image into smaller subregions that are
watermarked separately using different sets of orthogonal patterns and average the
correlations from multiple subregions. The averaging will decrease the values of random
correlations, while keeping the robustness sufficiently high and at reasonable computational
requirements.

Test 1: Global scheme

Even though the global scheme is not suitable for practical use due to the immense
computational and memory requirements, we nevertheless performed tests on a 128×128
square image downsampled to 64×64 pixels (see Figure 13).

Figure 14 Watermarked image.

A 64×64 gray-scale image was watermarked (Figure 14) using 100 orthogonal patterns
(the watermark length J = 100). It was then tested for presence of 100 randomly generated
watermarks. The coefficients α(k) were chosen for simplicity as 0.15(− 1)k. The correlation is
shown in Figure 15. The robustness with respect to JPEG compression was tested for quality
factors from as low as 5% to 85% and is shown in Figure 16. The robustness with respect to
other image processing operations is summarized in Table 4.

Figure 13 Original image.



27

Figure 15 Correlation for 100 random watermarks for global Method III.

The image modifications were done using commercial, PaintShop Pro 4.12 software.
Since Unzign12 cut the horizontal dimension of the image by 3 pixel values, the
corresponding portion of the original image was used to bring the dimensions back to those of
the watermarked image.

The robustness with respect to overwatermarking was tested on the watermarked
128×128 image. The image was repeatedly watermarked with up to five watermarks. The
correlation values for all five overwatermarked images are shown in Figure 17. The robustness
experiments together with the test for random correlations (see Figure 15) between
watermarks suggest that a threshold of 0.4 should be used with the scheme.

Table 4 Robustness with respect to image modifications.

Image operation Correlation

Blurring (in PaintShop Pro 4.12) 0.75

16% uniform noise (as in PSP 4.12) 0.95

Downsampling by a factor of 2 0.92

StirMark applied once 0.80

Unzign12 applied once 0.82
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Figure 16 Robustness of global Method III to JPEG compression.

Figure 17 Robustness of global Method III to overwatermarking.

Test 2: Local scheme

In the local scheme, the image is divided into square subregions and each subregion is
watermarked with a different set of orthogonal patterns. In our simulations, we used a
256×256 image of Lenna (see Figure 18) and divided it into 16 subregions of 64×64 pixels.
The coefficients α(k) were chosen as 0.05 (− 1)k. The watermark length was fixed at J = 30 to
cut down on computing time. First, the original image was watermarked (Figure 19) and then
tested for presence of 100 randomly generated watermarks.
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Figure 18 Original image “Lenna”.

Figure 19 Watermarked image.

The robustness with respect to JPEG compression is shown in Figure 20. Comparing the
correlation values to random correlations in Figure 21, it appears that the threshold of 0.25 is
appropriate in this case. Using this threshold, no false detections are produced for 100 random
watermarks. The threshold enables a reliable detection of 10% quality (0.38bbp) compressed
JPEGs. Other image processing operations, such as blurring, noise adding, and downsampling
and their combinations have been studied. The results are shown in Table 5. To test the
robustness with respect to the collusion attack, the total of six images watermarked by
different marks were averaged. The correlation coefficients were in the range from 0.51 to
0.71.
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Figure 20 Robustness of local Method III to JPEG compression.

Figure 21 Correlation for 100 random watermarks for global Method III.

2.2.4    Summary - comparison of watermarking methods I - III.
It would be very useful if there was a standard algorithm for comparing different

watermarking methods in an objective manner. Clearly, one should only compare techniques
that address the same problem and serve the same purpose. It would not be fair, for example,
to compare watermarking techniques that need the original image for watermark extraction
with those that do not. However, even if we constrain ourselves to techniques from one
category, different watermarking techniques are based on different principles and usually

Table 5 Robustness of local Method III with respect to image processing operations.

Image operation Correlation

Blurring (in PaintShop Pro 4.12) 0.68

16% uniform noise (as in PSP 4.12) 0.76

Downsampling by a factor of 2 0.53
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depend on several parameters that can be adjusted. The parameters determine the strength and
visibility of the watermark, and the watermark size. In order to compare two techniques, one
would have to adjust the watermark strength to the Just Noticeable Difference6 (JND) in the
original image and apply a standard set of image deformations. This should be repeated with a
large database of various images and average the results over the images. Each standard image
deformation should depend on one scalar value that can be adjusted. This will enable us to
quantify the image deformation using one number and register at which value the watermark
becomes undetectable. Examples of such scalar quantities are compression ratio for lossy
compression scheme, the standard deviation of a Gaussian blur kernel, signal-to-noise ratio,
etc. Since the perceptual measures needed for calculating the JND should be available at the
end of Phase II, we plan to return to the problem of comparing watermarking techniques later
during our Phase II effort.

2.3       A New Attack on Watermarking Schemes
We will describe a possible weakness of the watermarking method developed by a group

at NEC. In particular, we proposed an attack based on calculating the modifications to the
lowest frequency DC coefficients utilizing image areas with almost constant luminance or
luminance gradient. In this report, we summarize the results of numerical experiments
performed on a real image. We took a 128×128 gray scale image with 256 shades of gray.
The image was modified so that a small area of pixels in the upper right corner has constant
luminance of 192 (see Figure 22).

Figure 22 A test image with a small area of pixels of constant brightness
(the upper right corner)

The implementation of the NEC watermarking method was realized as an m-function in
Matlab. The Matlab code is included below.

function [Mwat,ind]=mark(M,alpha,R)

                                               
6The perceptual measures to be developed during Phase II could be used to adjust the parameters so
that watermarks of approximately the same visibility are embedded by each technique to be compared.
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[aux,N]=size(R);
t(1)=1;
i=1;

while t(i) < N,
  i=i+1;
  t(i)=t(i-1)+i;
end

count=1;
j=2;
ind(1,1)=1;
ind(1,2)=1;

while count<N & j<=i
  k=0;
  while count<N & k<=j-1
    count=count+1;
    if mod(j,2)==0
      ind(t(j-1)+1+k,1)=k+1;
      ind(t(j-1)+1+k,2)=j-k;
    else
      ind(t(j-1)+1+k,1)=j-k;
      ind(t(j-1)+1+k,2)=k+1;
    end
    k=k+1;
  end
  j=j+1;
end

XM=dct2(M);
XMwat=XM;

for i=2:N-1
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XMwat(ind(i,1),ind(i,2))=XM(ind(i,1),ind(i,2))*(1+al
pha*R(1,i));

end

Mwat=idct2(XMwat);

The function mark has three input parameters and two output parameters. The input
parameters are:

(1)  the image M stored as an intensity matrix,

(2)  the visibility / strength parameter alpha, and

(3)  a vector R of N Gaussian random numbers.

The output variables denote the watermarked image Mwat stored as an intensity matrix, and
the indexes ind(1:N,1:2) of modified DC coefficients (the k-th coefficient corresponds
to the element (ind(k,1),ind(k,2)) of the DCT matrix). The function first calculates
the indexes, which are determined by scanning the DCT by diagonals as in the JPEG
compression algorithm. Next, a DCT of the image M is calculated, and the lowest N
coefficients of the DCT determined by ind(1:N,1:2) are modified by alpha*R percent,
where R is an N dimensional vector consisting of N Gaussian random numbers with unit
variance and zero mean. Finally, the inverse DCT is performed and the watermarked image
Mwat is obtained.

The detection of the watermark is based on solving a system of P equations for N
unknowns, where P is the number of pixels with known values of gray levels (or at least
values that can be guessed based on interpretation of the image) and N is the length of the
Gaussian random sequence (the watermark). Writing the inverse cosine transformation as

M( , ) ( ) ( ) ( , ) cos ( ) cos ( ),i j w r w s D r s r i s j
sr

=
× × + × +

==
∑∑2

128 128 2 128
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( ) / ( )

( ) / ( )

= = =
= = =

 when  and  otherwise

 when  and  otherwise

and D(r,s) denotes the DCT matrix of coefficients. By taking the difference between the
watermarked and unwatermarked Mwat− M, all terms in the summation cancel except those
that have been modified by the watermarking technique. Therefore, we can write for the
difference Mwat− M
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where rk and sk are determined from the indexes ind(1:N,1:2) as rk = ind(k,1) and
sk = ind(k,2). The last equation is a linear system for N unknowns R(k). The number of
equations is the same as the number, P, of pixels (i, j) for which the original gray level can be
estimated or is known. Even though the number of pixels, P, may exceed N, the system cannot
be readily solved for the watermark because the discrete cosines do not generally form a set of
linearly independent functions on proper subsets of the image. In our experiment, we took
P=862 pixels that had constant brightness in the original unwatermarked image. Then, we
inserted a watermark into the lowest 50 DC coefficients using the function mark. The
resulting overdetermined system of equations was solved for R(k). The original and recovered
watermark sequence is shown in Figure 23. It can be clearly seen that the watermark has been
identified almost exactly! It was not identified completely accurately because the matrix of the
system of equations is usually ill conditioned. The Matlab’s left matrix division was used to
calculate the watermark sequence.

By increasing the number of modified coefficients in watermark embedding, this attack
becomes harder to perform because the rank of the matrix is basically determined by the
number of pixels, P, and their spatial arrangement. By increasing the number of modified
coefficients, N, to 100, the Matlab linear solver could not recover the watermark sequence due
to a very ill-conditioned matrix. It is not surprising that a general linear system solver breaks
down in such cases. More sophisticated techniques that were not investigated so far by the PI
could be put to work. For example, one could add other constraints that could make the
problem of finding the watermark sequence better conditioned. One obvious possibility is to
use a stabilizing functional7 that would give penalty to sequences that do not satisfy Gaussian
statistics. Even though such methods are usually computationally expensive, a speed is
obviously not a critical issue in watermark breaking.

2.3.1    Analysis of the StirMark attack
One of the most powerful general watermark removing software routines for testing

robustness of watermarks is the StirMark [19]. This attack is not targeted to a specific
watermarking method and can be mounted against any watermarking scheme. It attempts to
simulate distortions caused by scanners and copying machines. Minor geometric distortions
are applied to the image and the image is resampled. In addition, a small, smoothly distributed
error is added to all pixels. One can say that StirMark is a combination of a general, nonlinear
geometric transformation combined with a smooth noise. StirMark has been reported to be
very effective against many watermarking techniques especially when applied iteratively [19].

                                               
7Such methods have been well studied in image reconstruction.
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Figure 23.  Comparison of the original (broken line) and the recovered (solid line)
watermark of length 50.

We analyzed the effects caused by StirMark based on a DCT of the image. Previous
attacks on watermarking schemes concentrated on manipulating the gray levels of the
watermarked image. StirMark modifies the gray levels very little but applies a geometrical
distortion to the image. As if the image was painted on a rubber canvas, it is stretched and
resampled to the same pixel dimensions as the original watermarked image. This type of
“horizontal” distortion, as opposed to a “vertical” distortion based on manipulating just the
gray values, introduces large differences in the coefficients of the DCT. Thus, all methods that
modify the coefficients of DCT of the whole image will be successfully attacked. Localized
methods that embed a large number of smaller marks into the image stand a better chance of
surviving the attack, but encounter serious synchronization problems. One needs to
synchronize the watermark detector for each block before a cross correlation can be
calculated.

The watermarking methods that are least affected are those that require the original image
for watermark detection. If the original or the watermarked image is available, one can
consider the nonlinear geometric distortion introduced by StirMark as a generalized type of
geometric distortions, such as rotation or cropping. It then should be possible to derive the
field of motion vectors and transform the tampered image to eliminate the distortion.
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Figure 24 shows the influence of StirMark on the DCT coefficients. On the x axis is the
relative change of DCT coefficients, while the y axis shows the percentage of the lowest 1000
coefficients that have undergone a change of at least x. For example, three applications of
StirMark change 80% of the lowest 1000 DCT coefficients by at least 10%, while roughly
30% of coefficients have been modified by at least 50%, etc. The graph compares the
modifications with other image processing operations, such as JPEG compression, blurring,
downsampling, and noise adding. Extreme modifications of the image, such as multiple
blurring, 5% quality JPEG compression (0.38bpp), or 4x downsampling (this eliminates
almost 94% of all information from the image!), cause extremely visible degradations but they
do not modify DCT coefficients as severely as one application of StirMark! This means that
StirMark is able to modify the Fourier spectrum of the image quite extensively while keeping
the perceptual quality of the image at a very reasonable level. This is caused by the nonlinear
distortion of the image. For comparison, in Figure 25 we plotted the original image and
images after one, two, and three applications of StirMark. A casual inspection does not reveal
any big differences. Under a closer inspection, one can clearly see that the image has been
stretched along the horizontal direction. Lenna’s hat has been visibly stretched, and the
distortion becomes very visible at the edges. Thus, StirMark achieves a perceptually non-
disturbing distortion while making relatively big changes to the Fourier spectrum. This is
caused by the nonlinear geometrical transformation.

Figure 24 The influence of StirMark on DCT coefficients.
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Figure 25 Results of several applications of StirMark.

2.3.2    A countermeasure for StirMark attack
As argued above, if the original image is available or if at least the untampered

watermarked image is available, we may try to remap the StirMark tampered image back
before we apply any watermark detector. This is, in fact, necessary. It is a commonly accepted
fact that geometrical transformations, such as rotation, cropping, or affine transformation
should be applied before any watermark detector can be applied. There is no reason, why the
same logic should not be applied for a more general type of geometric distortion introduced
by StirMark.

We have implemented a simple C routine, adjust.c, that finds motion vectors between two
images and adjusts one image according to the other image.

The routine needs four line parameters as the input: the original image im1, the tampered
image im2, a positive integer r, and a second positive integer S. The images must be in the
Portable Gray Map (PGM) format. This raw image format is easy to manipulate, read, and
write. The integer r specifies the size of a square region that will be matched between the
images im1 and im2. The second integer S specifies the size of the square region in which the
program searches for a matching region. The pseudo code for adjust.c is shown below. The
routine produces an adjusted image adj.pgm.

The program never uses the gray levels of the original image. Only the gray levels of the
tampered image are used for the new, adjusted image. The original is only used to get the
spatial correlation and invert the geometric distortion.
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The routine described above was used to test the robustness of the watermarking
technique based on orthogonal patterns developed in our effort from the previous month.

begin

x = im1; w = im2;   // Read the images, convert them to matrices with entries in [0,1]

for i = r+S to N− r− S

    for j = r+S to M− r− S

        for u = − S to S

            for v = − S to S

                match the squares x[i− r… i+r][j− r… j+r] and w[u− r… u+r][v− r… v+r]

                // The size of both squares is (2r+1) × (2r+1)

                // Matching could be based on the difference between the two squares or

                // the correlation between them

         end (v)

      end (u)

      find the best matching square (U,V) out of those (2S+1)2 squares

      set adj[i][j] = w[U][V]        // adj[][] is the adjusted image

   end (j)

end (i)

When StirMark was applied only once, the value of the correlation was barely above the
detection threshold set to 0.2 (see Table 6). Two and three applications of StirMark without
adjustment successfully removed the watermark (Table 6). With the adjustment, the values of
correlation were well above threshold.

We also combined the StirMark attack with other image processing operations such as
lossy JPEG compression with quality factors as low as 15%, blurring, and noise adding. The
results are shown in Table 6.

Watermarking techniques that do not require the original image will encounter
synchronization problems when applied to images modified with StirMark. It appears that
localized techniques with small block sizes will help overcome the synchronization problem at
the expense of computational complexity.
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Table 6 Watermark detection with and without adjustment for StirMark.

Distortion Correlation without
adjustment

Correlation with
adjustment

StirMark 1x 0.26 0.78

StirMark 2x 0.14 0.81

StirMark 3x 0.10 0.78

StirMark 3x + 20% uniform
noise (as in PSP 4.12)

< 0.1 0.53

StirMark 3x + blurring 1x in
PSP 4.12

< 0.1 0.69

StirMark 3x + JPEG 25%
quality compression

< 0.1 0.79

StirMark 3x + JPEG 15%
quality compression

< 0.1 0.78

2.4       Implementation of Watermarking Techniques

2.4.1     Basics of Matlab
Run Matlab by double clicking the Matlab icon in Win 95 or NT. Change the default-

working directory from c:\Matlab\bin to some working directory of your choice. You can
choose either DOS or UNIX commands, such as dir, cd, ls, pwd, etc. Copy the images that
you plan to watermark and the software provided on the enclosed floppy to your working
directory. Make sure that you have installed the image processing toolbox before you start
with running watermarking applications. The commands for importing, viewing, and exporting
images are:

[X,map]=bmpread(‘image.bmp’); for importing image from a disk

imshow(X,map); for viewing an indexed image in Matlab

bmpwrite(X,map,’image.bmp’); for writing an image to disk

More detailed information can be found in Matlab’s manual or using the line command help.

2.4.2    Watermarking Method I
In Section 2.2.1, we described and tested a watermarking technique based on pattern

overlaying. The original image is watermarked with a pattern that is generated in several steps.
First, the hash of the original image together with userID number and other appropriate
information is used to seed a PRNG to generate an initial black and white pattern. The pattern
is further processed using a cellular automaton and smoothened to push the watermark’s
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energy into low frequencies. The final pattern is rescaled and added to the original image. To
test the presence of a specific watermark in a modified image, the original image is subtracted
and a cross-correlation in the Fourier space is used to decide about the presence of the
watermark.

The implementation in Matlab has been designed for gray scale images with arbitrary
dimensions. The extension to color images is straightforward −  one could watermark each
channel with a different watermark, or switch to a more useful color base, such as Luminance,
Hue, and Saturation, and watermark the luminance, converting the image back to RGB after
the watermarking is completed. We further assume that all the images involved are in the
Windows BMP format. It is possible to work with more general formats, such as TIFF, but
we opted for the simple BMP format because the main purpose of this implementation is
proof of concept and to provide routines for testing the methods.

Let us assume that we have an original image orig.bmp stored in the working directory.
Make sure you have the following m-functions in the same working directory: watermark.m
and detect.m.  To watermark orig.bmp with a user-defined watermark, simply use the
following line command:

[Y,w]=watermark(‘orig.bmp’, seed);

where Y is the watermarked image matrix, w is the watermark matrix, and seed is the seed for
Matlab’s PRNG generator. In the final implementation, the seed will be automatically
determined from the original image, author’s ID, and other information. The matrices Y and w
are outputs of the watermark m-function and will be automatically generated. The
watermarked image Y  is stored as water.bmp in the working directory. The stages of the
watermarking process are displayed as the calculations proceed. The function renders both the
original image and the watermarked image on the computer screen automatically (two Matlab
Figures automatically pop up). Although the speed of the algorithm is very reasonable, we
expect C/C++ implementations to run even faster.

To test the presence of the watermark w in image test.bmp, type the following at the
Matlab prompt:

detect(‘test.bmp’, ‘orig.bmp’, w)

without a “;” at the end. The result will be the correlation number between 0 and 1. Based on
the tests described in Section 2.2.1, we set the threshold for watermark detection to 0.3. This
number is based on the highest correlation value (0.17) obtained for detection of random
watermarks in an unwatermarked image.

At the end of Section 2.2.2, we argued that the reliability of watermarking method II
needs to be improved before a working prototype software can be offered for further testing
and demonstrations. This is why the Matlab code for the watermarking method II is not
provided at this point.

2.4.3    Watermarking Method III
The theory behind watermarking based on random smooth orthogonal patterns has been

presented in our monthly report No. 7 and 8. The practical implementation in Matlab is very
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similar to the previous method. Before you start, make sure you have the following m-
functions in your working directory:

watermark.m, detect.m, genog.m, mark.m, gs.m, and smooth.m.

Note: The watermark and detect functions are not the same functions as in the watermarking
method II. We recommend that you create a new working directory for each watermarking
technique to avoid using incorrect m-functions.

To watermark the original image orig.bmp, type

Y=watermark(‘orig.bmp’, Blocksize, Patterns, seed);

where Blocksize is the size of the blocks used for embedding watermarks (see Section 2.2.3),
and Patterns is the number of orthogonal patterns. The choice of these parameters is
important and will determine the robustness and processing speed. For a 256×256 image, we
recommend Blocksize=64, Patterns=30. For a general image, we recommend to choose the
Blocksize to be at most one quarter of the image size, but probably not smaller than 16. Keep
the number of patterns at 30 or higher. The watermarked image is stored as water.bmp in your
working directory. The function watermark renders both the original image and the
watermarked image on the computer screen automatically (two Matlab Figures automatically
pop up).

To detect a watermark, use this command:

detect(‘orig.bmp’, ‘water.bmp’, ‘test.bmp’, Blocksize, Patterns, seed)

again without the semicolon at the end. The result is the value of correlation of the watermark
in the image test.bmp. Note that unlike in the previous method, the watermark is not stored in
the variable w. Actually, it is not explicitly stored in any variable. This is because we would
have to store all orthogonal patterns and that would take too much space. It is actually more
convenient (and secure!) to let the detect function compute the orthogonal patterns for each
detection. The inner workings of all the Matlab routines are explained using comments inside
the bodies of corresponding m-functions.

3.         Recommendations for Future Research

There are several research direction one can pursue to further extend techniques
developed in Phase I. The research directions detailed below have already been proposed for
Phase II research.

The steganographic techniques described in Section 2.1 should be further extended so that
the capacity of the hidden channel can be maximized while keeping a specified level of
security. The security level could be measured using a set of statistical measures. The
measures can be used to quantify the modifications of the carrier image caused by hiding the
secret message. This way, one will be able to choose the best carrier image to fit a given
message. Also, by changing the requirements on the statistical measures that should be
preserved by the hiding algorithm, one can opt for an extremely secure method while
sacrificing the capacity (for messages of extreme importance), or choose a large capacity at
the expense of security (for less security-demanding applications).
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Another major research direction that will be pursued in the future is the extension of
robust message hiding algorithms to other bases than Fourier trigonometric bases. By making
the choice of the basis key-dependent, the security of the technique significantly increases
while the capacity of the hidden channel also grows. One possibility would be to use wavelet
bases as a replacement for DCT. We expect that the flexibility of wavelets will generally
provide higher embedding capacity.

Utilization of the properties of the HVS seems necessary for capacity-optimized data
embedding techniques. The irrelevant (invisible) subspace of typical images appears to be
large enough to allow multiple bit embedding for subregions as small as 8 × 8 pixels. It will be
interesting to see if current low-bit encoding schemes that utilize the properties of the HVS
pose a threat to such watermarking schemes. An important tool for successful development of
watermarking schemes based on the properties of the HVS, is a good model of the HVS, or,
equivalently, a good perceptual measure between images.

To quantify the robustness of message hiding schemes, a standardized set of image
processing tools should be employed. It should be possible to quantify the security with a set
of global and local statistical measures, enabling thus objective comparison of security of
different message hiding schemes and their evaluation.

Future research on robust data embedding will bring solutions to an important and difficult
problem of image access control. If a standard for marking image content were accepted, the
construction of “intelligent” Internet browsers capable of filtering out images with certain
marks would become possible. This way, certain images will not be displayed depending on
user’s login name. For example, one could filter out images inappropriate for viewing by
children or images that should be available only to people with certain security clearance.

4.         Applications

The techniques developed and investigated during Phase I will be further extended and
developed in Phase II. The anticipated research results of Phase II are:

• Techniques for robust hiding of messages in digital imagery based on wavelet bases and
general incomplete orthogonal bases;

• Perceptual measures for determining the visibility of the watermark inside an image;

• Set of global and local statistical measures and integral measures for testing the security of
message hiding schemes;

• Adaptive message hiding schemes for hiding large messages inside digital images while
preserving a specified level of security (a set of statistical measures);

• A prototype software product using which a user can (a) watermark his image in an
extremely robust way to protect copyright, fingerprint the image, or communicate a short
message in a robust way, or (b) hide a large message within a digital image with a certain
security level.

The anticipated tasks for Phase III include the following activities:

(1)  Marketing the patents developed during the research on Phase I and Phase II;
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(2)  Marketing the prototype software product;

(3)  Writing plug-ins for current wide spread image manipulating software packages such as
PhotoShop, PaintShop, Corel Draw, etc.;

(4)  Creating an on-line commercial watermarking web-service for image marking;

(5)  Creating a commercial software package for image marking and covert communication,
which will include message compression, encryption and hiding.

It is to be expected that the importance of secret message hiding in digital imagery will
only increase due to the following factors:

• Rapidly developing computer networks, such as the Internet;

• Ever increasing need to transmit images, graphs, charts, sound, and video;

• Emergence of new technologies such as videophone, HDTV, digital surveillance video-
cameras;

• Increasing bandwidth of communication links;

• Growing number of subjects communicating via computer networks;

• Availability of images from satellites, airplanes, soldier-carried cameras;

• Use of digital imagery in the court of law.

The techniques will be directly applicable to secure intelligence data manipulation,
information protection, and information warfare. Besides obvious military applications, the
private sector will substantially benefit from the proposed techniques. For example,
watermarks can be used for solving a dispute about an ownership of some digital data, for
fraud protection, distribution of digital video, and increasing the bandwidth of existing
communication links (adding subtitles in several languages, captions, comments, small icon
with sign language, etc within the image). Other applications of the proposed techniques
include:

Military Applications: Covert communication, low-probability-of-intercept communi-
cations, traitor tracing, authentication, increasing communication bandwidth (adding
comments, captions, image status information), control over access to images with different
degree of clearance

Commercial Applications: Copyright protection, fingerprinting, tracing of illegal copies,
intelligent Internet browsers capable of automatic filtering of images with certain content,
image integrity protection

Covert communication (military)

When two parties A and B are exchanging encrypted messages, they raise suspicion and
attract attention of a third party who can try to break the code, attempt to find out the
passwords and keys, disturb the communication channel (even infrequent and “small” errors
will make decryption impossible due to cipher-text sensitivity), and cut the communication
channel (refuse services).
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Traitor tracing (military).

Central agency releases information to deputies A, B, C, D, E. One of them leaks the
information to the enemy. By marking each of the five documents distributed to A− E with a
different invisible mark, one could trace down the traitor provided the compromised
information becomes available.

Authentication (military and commercial)

Classical authentication and signature schemes work by appending a message digest to the
message. Given a secret message M, an encryption function of the sender fS , and an
encryption function of the receiver fR , the sender appends fS -1(H(M)) (encrypted hash of M)
and sends fR (M * fS -1(H(M))). The receiver decrypts the message by applying fR -1 and verifies
that the message came from S by comparing H(M) and fS  of the encrypted message digest.
One potential disadvantage of this authentication scheme is that once the message has been
decrypted, the signature can be removed and replaced with a different signature. In other
words, the authentication scheme is for exchanging messages. It is part of the communication
protocol. Once the message is received and decrypted, the authentication also “expires.”
Authentication based on image watermarking works in an entirely different way. The signature
stays in the image as long as the image is recognizable, it is present even in a small part of the
image (it is possible to identify the author given a portion of the image), the signature (mark)
cannot be removed or replaced without a correct password (key). Thus, the watermarking
scheme is much more flexible and offers many other commercial applications, such as digital
watermark, fingerprinting, copyright protection of images, etc.

Intelligent Internet browsers (military and commercial).

Such browsers will have the capability of filtering out images with certain marks depending on
who is logged on to the system. Images will contain marks, which could be automatically
detected by the browser before displaying them on the monitor. In this manner, certain images
will be available only to people with a specified degree of clearance. Similarly, adult images
not appropriate for viewing by children will not be displayed to a user with a certain user ID,
etc.

Captions (military and commercial).

Adding captions to images in a robust way is another important potential application of the
proposed research. Caption may include but is not limited to the following information: the
author of the image, place, time, sender, image content (no hash functions but, say,
coefficients of the largest DCT coefficients).

Classical methods for adding captions:

Appending the caption to the image by inserting several rows of pixels. Can be easily removed
or replaced, increases the size of the image. Overlaying the caption in a visible form into the
image (for example into the lower right corner). The caption may disturb an important part of
the image (if done automatically, otherwise requires a human to do it), can be easily removed
or replaced.
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New methods for caption adding using data hiding:

Embedding the caption into the image rather than appending or overlaying it offers the
following advantages: The image size stays the same, the caption is invisible and does not
deteriorate the image, the caption cannot be removed without a password, it stays in the
image as long as the image content is not drastically changed (after lossy compression,
filtering, etc.), the caption cannot be replaced or removed without the password, the caption
embedding can be automated and does not require human intervention.

Proof of integrity of digital imagery for law enforcement agencies (commercial)

Creating a system for watermarking video-streams for proof of image integrity for the chain of
custody for law enforcement agencies. The purpose of the watermark would be to proof that
the image has not been tampered with. Therefore, the watermarked video could be used as
evidence in the court of law.
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Appendix A:  Discrete Cosine Transformation
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Inverse Discrete Cosine Transformation
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